Diiodo- π -cyclopentadienyliridium and Its Derivatives

Hiroshi Yamazaki

The Institute of Physical and Chemical Research, Wako-shi, Saitama (Received October 28, 1970)

Recently formation of dihalo-π-(pentamethylcyclopentadienyl)iridium from the reaction of iridium chloride hydrate with hexamethyl (Dewar benzene) was reported.¹⁾ However, simple dihalo-π-cyclopentadienyliridium is not known as yet in spite of its ability to prepare complexes having a π -cyclopentadienyliridium group. We wish to report the preparation of diiodo- π -cyclopentadienyliridium and some derivatives there-

Cyclooctatetraene-π-cyclopentadienyliridium²⁾ 114—116°C. IR(KBr): $\nu_{c=c}$ 1635 cm⁻¹. NMR(pxylene): 4.27τ (singlet, -CH=CH-), 5.21τ (singlet, C_5H_5), 5.77 τ (singlet, coordinated -CH=CH-).] was treated with equimolar amount of iodine in methylene chloride at room temperature to give insoluble brown crystals of diiodo-π-cyclopentadienyliridium (I) in almost quantitative yield. The infrared spectrum of I is very similar to that of the rhodium analogue.4) similar treatment of 1,5-cyclooctadiene-π-cyclopentadienyliridium did not give I but insoluble brown crystals having a combined composition of the reactant, $C_{13}H_{17}$ I₂Ir, which was deduced on the basis of elemental analysis.

Similar to the rhodium analogue,⁵⁾ I reacted with triphenylphosphine in methylene chloride giving airstable orange red crystals of diiodo-triphenylphosphine- π -cyclopentadienyliridium (II) [Yield 90%. Mp \sim 310°C

(decomp). NMR(CDCl₃): $2.2-2.7\tau$ (C₆H₅), 4.57τ (doublet, J_{PH} 1.5 Hz, C_5H_5).]. Methyldiphenylphosphine and carbon monoxide also gave diiodo-methyldiphenylphosphine-π-cyclopentadienyliridium [Orange red crystals. Yield 82%. Mp 209—211°C. NMR- $(CDCl_3): 2.1-2.7\tau (C_6H_5), 4.57\tau (doublet, J_{PH} 1.5 Hz,$ C_5H_5), 7.26 τ (doublet, J_{PH} 11 Hz, CH_3).] and diiodocarbonyl-π-cyclopentadienyliridium [Red crystals. Yield 93%. Mp>180°C (decompn without melting). IR(KBr): ν_{co} 2040 cm⁻¹ (with a shoulder at 2020 cm^{-1}). NMR(CDCl₃): 3.99τ (singlet, C₅H₅).] respectively.

The reaction of II with methylmagnesium iodide in tetrahydrofuran-benzene mixture gave air-stable orange red crystals of iodo-triphenylphosphine-π-cyclopentadienylmethyliridium [Yield 80%. Mp 233—236°C (decomp). NMR(CDCl₃): 2.4—2.7 τ (C₆H₅), 4.89 τ (doublet, J_{PH} 1.5 Hz, C_5H_5), 8.37 τ (doublet, J_{PH} 7 Hz, CH₃).]. The reaction of II with isopropylmagnesium bromide in the presence of carbon monoxide afforded triphenylphosphine - carbonyl - π - cyclopentadienyliridium⁶⁾ [Yellow crystals. Yield 18%. Mp 180—183°C. IR(Nujol): ν_{co} 1925 cm⁻¹. NMR(CDCl₃): 1.9—3.1 τ (C_6H_5) , 5.03 τ (singlet, C_5H_5).] and in the presence of triphenylphosphine, ionic hydridoiridium complex of the formula, $[C_5H_5Ir(PPh_3)_2H]^+I^-$ [Colorless crystals. Yield 47%. Mp 194—198°C (decomp). IR(KBr): $v_{\rm IrH}$ 2150 cm⁻¹. $NMR(CDCl_3): 2.4-3.0\tau (C_6H_5),$ 4.60 τ (singlet, C₅H₅), 24.4 τ (triplet, J_{PH} 26 Hz, Ir-H).]. The last reaction differs from the cases of cobalt and rhodium analogues which gave bis(triphenylphosphine)- π -cyclopentadienyl-cobalt and -rhodium.⁷⁾

¹⁾ J. W. Kang, K. Moseley, and P. M. Maitlis, J. Amer. Chem. Soc., 91, 5970 (1969).

²⁾ This compound was prepared by a procedure similar to that for the preparation of 1,5-cyclooctadiene-π-cyclopentadienyliridium.3) Satisfactory results have been obtained for the analysis of all the compounds described in this communication.

³⁾ S. D. Robinson and B. L. Shaw, J. Chem. Soc., 1965, 4997.

⁴⁾ R. J. Angelici and E. O. Fischer, J. Amer. Chem. Soc., 85, 3733 (1963).

A. Kasahara, T. Izumi, and K. Tanaka, This Bulletin, 40, 699 (1967).

⁶⁾ This compound was prepared in a higher yield from the reaction of Vaska's complex with sodium cyclopentadienide.⁷⁾
7) H. Yamazaki and N. Hagihara, "Symposium of Organo-

metallic Compounds," Osaka, October 16, 1968; Preprints, p. 123.